有機塩素系化合物含有廃水の処理
—ジクロロメタンの処理—

山口県衛生公害研究センター

田中 克正・下戸 義弘・杉山 邦義
西村 雅典・古谷 誠治・前田 達男

Removal of Chlorinated Hydrocarbons in Wastewater
—Dichloromethane—

Katsumasa TANAKA, Yoshihiro SHIMONO, Kuniyoshi SUGIYAMA
Masanori NISHIMURA, Seji FURUTANI, Tatsuo MAEDA

Yamaguchi Prefectural Research Institute of Health

はじめに

平成4年12月に水道水の水質基準が改正され、その後環境基準、排水基準も改正され、基準項目が大幅に増加したが、この改正でジクロロメタンも項目に追加された。ジクロロメタンは農薬等化学物質の抽出溶媒として優れており、著者らも実験室で多量に使用しているが、今まで以上に取り扱いに注意を要するようになった。とくに、ジクロロメタンの水への溶解度が高いため、農薬等抽出後の廃水には濃度のジクロロメタンが含まれており、その除去法として活性炭処理、沸気処理、分離処理について検討した。

方 法

1 使用した廃水

農薬を抽出した後のゴルフ場排水で、ジクロロメタン4,500mg/L、塩素53%を含有し、CODは約10ppmであった。（以下、廃水という）

2 試薬

活性炭：オルガノ製活性炭
酸化チタン：粉末－関東化学製（アナタ－ゼ型）
セラミックボール担持体－石原産業製処理用

3 装置

ガスクロマトグラフ：島津GC-14B
活性炭処理用クロマト管：内径15mm、長さ30cmのクロマト管に活性炭26.7g（容量40mL）を詰めたものを使用した。

沸気装置：図1に示した装置を使用した。
光触媒分解装置：図2に示した装置を使用した。
水銀ランプ：15W

4 ジクロロメタン分析法

JIS K 0125に定める方法によった。

5 活性炭処理

粒状活性炭をつめたカラムに10mL/minの流速で廃水を通し、処理を行った。

6 沸気処理

図1に示す沸気装置のボリ瓶に廃水1Lを入れ、毎分1.4Lの空気を吹き込み沸気処理を行った。

図1 ばっ気装置の概要図

7 分解処理（光触媒酸化チタンの利用）

(1) 廃水の直接処理

直径12mm、長さ49cmの石英管中に、セラミックボール担持体（5~7mm球状）触媒を詰め、廃水
を流し込み、水銀ランプを点灯し紫外線を照射した。

(2) ばっ気後のジクロメタン処理

図2に示すような装置を作り、石英管の中には、アノターサを作るガラス繊維を塗布したガラス繊維紙の短冊を分散させ、図1の装置の排気口から気体のジクロメタンを流入させ、紫外線を照射した。

図2 光触媒を用いた分解装置の概念図

(3) アルカリ性アルコール溶液中での処理

ばっ気処理によって生成した気体のジクロメタンをエタノール100mLに吸収させ、10%水酸化ナトリウム溶液を約十分の一加え、(1)と同様に、セラミックボール型支持体触媒を石英管に詰め、アルカリ性アルコール溶液を流し込んで紫外線照射を行った。

結果及び考察

1 活性炭処理

活性炭処理を行った後の廃水を50mLごと採取し、ジクロメタン濃度を測定した。その結果を図3に示した。排気基準の0.2mg/L程度まで濃度を下げようすると、廃水10mLに活性炭が2g以上必要となることが判明した。

ジクロメタンガス低濃度（数mg/L）の場合、処理に有効であると報告されているが、著者らの実験室のように高濃度の廃水が年間300リットルを超える場合、廃棄物として排出活性炭が60kg以上となり、新たな廃棄物問題を引き起こすこともあります考えられ、実用的ではない。

2 ばっ気処理

ばっ気処理を行った廃水中のジクロメタン濃度を経時的に測定し、その結果を図4に示した。ジクロメタン濃度は2時間で排水基準以下、6時間で環境基準程度となり、筆者らが新たにテトラクロロエチレンで高濃度汚染された地下水の処理についについて報告したものとほぼ同程度の結果となった。

以上の結果から、当面の対策として、数時間ばっ気処理を行い、気体のジクロメタンを粒状活性炭に吸着させ、廃水を放流することにした。活性炭の使用量は、直接排水を処理するときと比べて、五分の一程度で済むことが、排気口を検知管でチェックすることにより判明した。
取り扱い時に気化したり、ばら気処理によって発生する気体の揮発性有機化合物の処理としては、活性炭が最も一般的に使用されており、最近では発効がよく、再生も行いやすい細密状の活性炭が、一部で使用されてきている。ジクロロメタンへの適用も、この結果から十分可能と考えられた。

3 分解処理（光触媒酸化チタンの利用）

活性炭の使用に比べ、程度の差こそあれ、新たな廃棄物問題を引き起こすことが懸念されるため、根本的な分解処理が必要と考え、近年有機汚染物質の処理への適用が注目されている光触媒酸化チタンの使用を検討した。

(1) 廃水の直接処理
紫外線照射によるジクロロメタンの分解は、2時間で4,500mg/Lから4,000mg/Lへと約10%の減少にすぎなかった。ほとんどの分解すると報告されているトリクロロエチレン等からの予想を大きく下回るものであった。
分子構造が安定で、分解には大きなエネルギーを要すると言われているジクロロメタンの処理は、水溶液のままで困難であると考えられた。

(2) ばら気後のジクロロメタン処理
有機塩素化合物の水溶液での分解は、気体状態の場合よりも相当効率が低下すると言われており、そこで図2に示すばら気装置の送気流量を100mL/min程度まで減少させ、排出される気相を光分解装置に導入して紫外線照射行った。水銀ランプ点灯前後の気相を装置の最終出口で採取し、ジクロロメタン濃度を測定した。その時のガスクロマトグラムを図5に示した。

ジクロロメタン濃度は紫外線を照射することにより数十%減少するが、生成物としては分子量の小さな物質だけでなく、少なくながらジクロロメタンより分子量の大きいクロロホルム等の生成がみられた。
そこで、ジクロロメタンを完全に分解するために気相の流れを止め、1時間紫外線照射を続けたところ、図6のクロマトグラムに示すように、分解物の増加はほとんどなく、分子量の大きい多種類の生成物が増加してきた。紫外線照射によりC-Cl結合が開裂し、塩素ラジカル等が生ずることにより、このラジカルが新たな生成反応に使われることなく、無機物として系外に排除される条件を探る必要があると考えられた。
まとめ

ジクロロメタン含有廃水の処理としては、ばっ気処理を行い、気体のジクロロメタンを活性炭に吸着させる方法が、現時点で最も良い方法と考えられた。

使用済み活性炭は廃棄物となるため、吸着したジクロロメタンの回収及び活性炭の再生について、検討が必要であると考えられた。

根本的な処理として、光触媒酸化チタンを利用した分解処理の検討を続け、実用化をめざしたいと考えている。

文 献

1）足立昌子ほか：衛生化学，42，268（1996）
2）田中克正ほか：第9回全国環境・公害研究所シンポジウム 予稿集，33（1994）
3）山崎玲子：化学と工業，47，152（1994）
4）村尾真行ほか：横浜国立大学環境科学研究所 研究，21，29（1995）
5）藤野達雄ほか：富山県環境科学センター年報，22，99（1994）
6）姚 元ほか：環境科学，7，39（1997）