はじめに

大気粉じん中の重金属は、工場や自動車排ガスなどの人体に有害な発生源、あるいは土壌や海洋などの自然発生源に由来する。例えば、NiやVは石油燃焼、ZnやPbは燃焼や自動車排ガス、AlやFeは土壌の影響を強く受けるため、地域の汚染状況を示す指標として、大気中の金属濃度を用いることができる。

そこで我々は、化学工業を中心とする工業地域である宇部市において、大気粉じん中の12種の重金属測定を行った。この結果をもとにして宇部市の大気中の重金属による汚染の特徴について考察した。

調査方法
1. 試料採取地点、採取方法、採取期間

試料採取は宇部市役所庁舎（4階建て）の屋上で行った。

採取方法は有害大気汚染物質測定方法マニュアルに従い、ハイポリウムエアサンプラー（柴田科学HV－1000F）にて、石英繊維ろ紙PALLFLEX（東京ダイレック2500QAT－UP）と下敷きとしてPOREFLON（住友機工WP－50－50）を重ねて装着し、吸引速度1000L/minで行った。

採取期間は季節毎に2週間ずつで、2002年10月7日～11日（試料番号秋－1～4）、2002年10月21日～25日（試料番号秋－5～8）、2003年1月20日～24日（試料番号冬－1～4）、2003年1月27日～31日（試料番号冬－5～8）、2003年3月24日～28日（試料番号春－1～4）、2003年4月3日～4月4日（試料番号春－5～8）、2003年6月23日～27日（試料番号夏－1～4）、2003年6月30日～7月4日（試料番号夏－5～8）に行った。各

Metallic Elements in the Air of Ube City

Hiroshi SUMURA, Yoshihiko MATSUDA, Yukiya IMATOMI, Masayuki UMEMOTO,
Kentaro OSADA, Kumiko KAMURA, Masayoshi ARITA
Yamaguchi Prefectural Research Institute of Public Health

2. 前処理法

基本的に有害大気汚染物質測定方法マニュアルに従った。試料採取した石英ろ紙の4等分した1つを、プラスマリアクター（ヤマト科学PR－503）で30分間酸処理後、細かく切ってテフロンビーカーに入れ、硝酸20mLと過酸化水素5mL（ともに関東化学高純度電解工業用）を入れ、ホットプレート上で1時間加熱分解を行い、ろ過した。ろ液は硝酸（2→100）水溶液20mLで再度加熱し、溶液はろ過してろ液に加えた。さらにろ紙を温水で洗浄し、洗液をろ液に加えた後、ホットプレート上でのべのろ液を蒸発乾固した。残査を硝酸（2→100）水溶液で溶解させ、50mLに定容して分析試料とした。

3. 分析法

今回測定対象にした金属は、Al、Ti、V、Mn、Fe、Co、Ni、Cu、Zn、Cd、W、Pbの12種である。分析は、ICP－MS（アリタ製ICP－MS）を行った。ICP－MSでは、内部標準としてSc、Y、In、Biを用いた。濃度が高い場合は、試料を適宜希釈して分析を行った。ICP－AESでは、Co、Cd、Wを除く9金属を測定し、内部標準として
てSc, Yを用いた。ICP-MSの測定質証数 ([ ]内は平板補正値) は、Al－27, Ti－47, V－51・52・53 [℃－3.127 (℃－0.113℃)], Mn－55, Fe－57, Co－59, Ni－60, Cu－63, Zn－66, Cd－106・108・111 [℃－1.073 (℃－0.712℃)], W－182, Pb－206・207・208 [℃－300℃], Sc－45, Y－89, In－115・118 [℃－0.016℃], Bi－209とした。ICP-AESの測定波長(単位nm)は、Al－396.152, Ti－334.941, V－311.071, Mn－257.610, Fe－259.940, Ni－231.604, Cu－324.754, Zn－213.856, Pb－220.335 Sc－361.384, Y－324.228となった。

標準物質は、ICP-MS STANDARD (AccuStandard Inc.) を用い、これに含まれていない物質及び内部標準物質は原子吸光測定用 (和光純薬) を用いた。

標準物質と内部標準のカウント数の比で検量線を作成し、試料の定校に使用した。内部標準は、対象金属の分子鉱に追い物質で使い分けた。なお、試料に含まれるSc, Y, In, Biの内部標準添加鉱に対する割合は、最大で

<table>
<thead>
<tr>
<th>表1 試料採取時の気象データと金属計合濃度</th>
<th>試料番号</th>
<th>天候</th>
<th>気温</th>
<th>水蒸気</th>
<th>風向</th>
<th>風速</th>
<th>平均風速 m/S</th>
<th>平均風速℃</th>
<th>平均湿度%</th>
<th>金属濃度 ng/m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>秋－1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.1</td>
<td>21.5</td>
<td>63.1</td>
<td>2400</td>
</tr>
<tr>
<td>秋－2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.8</td>
<td>18.2</td>
<td>75.6</td>
<td>450</td>
</tr>
<tr>
<td>秋－3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.4</td>
<td>20.0</td>
<td>71.0</td>
<td>380</td>
</tr>
<tr>
<td>秋－4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.3</td>
<td>21.6</td>
<td>73.0</td>
<td>540</td>
</tr>
<tr>
<td>秋－5</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.1</td>
<td>19.6</td>
<td>80.3</td>
<td>350</td>
</tr>
<tr>
<td>秋－6</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.3</td>
<td>17.9</td>
<td>68.0</td>
<td>350</td>
</tr>
<tr>
<td>秋－7</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.9</td>
<td>17.1</td>
<td>73.6</td>
<td>540</td>
</tr>
<tr>
<td>秋－8</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.4</td>
<td>16.8</td>
<td>67.6</td>
<td>120</td>
</tr>
<tr>
<td>春－1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.6</td>
<td>6.7</td>
<td>69.9</td>
<td>1800</td>
</tr>
<tr>
<td>春－2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.1</td>
<td>16.0</td>
<td>71.5</td>
<td>840</td>
</tr>
<tr>
<td>春－3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.4</td>
<td>10.4</td>
<td>84.0</td>
<td>840</td>
</tr>
<tr>
<td>春－4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.1</td>
<td>7.0</td>
<td>82.1</td>
<td>900</td>
</tr>
<tr>
<td>春－5</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.5</td>
<td>1.6</td>
<td>55.9</td>
<td>3000</td>
</tr>
<tr>
<td>春－6</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.8</td>
<td>4.7</td>
<td>68.2</td>
<td>2700</td>
</tr>
<tr>
<td>春－7</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.8</td>
<td>4.7</td>
<td>68.2</td>
<td>2700</td>
</tr>
<tr>
<td>春－8</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.8</td>
<td>4.7</td>
<td>68.2</td>
<td>2700</td>
</tr>
</tbody>
</table>

結果と考察

1. 定校下限値

有害大気汚染物質測定方法マニュアルに基づき、ICP-MSとICP-AESで定校下限値(単位ng/m³)を求めた。結果は、ICP-MSではAl－0.17, Ti－0.080, V－0.0049, Mn－0.097, Fe－0.023, Co－0.011, Ni－0.083, Cu－0.028, Zn－0.094, Cd－0.0050, W－0.0056, Pb－0.0080であった。一方ICP-AESではAl－9.0, Ti－0.37, V－2.8, Mn－0.12, Fe－0.96, Ni－2.9, Cu－1.1, Zn－0.71, Pb－18であった。両分析法の感度の違いから、ICP-AESの定校下限値が約2000倍も高くなる金属もあった。このため、ICP-MSではすべての試料で定校ができたが、ICP-AESではV, Ni, Pbで定校下限値以下の試料がいくつか見られた。

- - 65 - -
2 ICP-MSとICP-AESの分析結果の比較

ICP-AESで分析した9金属についてICP-MSの結果と比較した。AlのICP-MS／ICP-AESの傾きが1.18で、ICP-AESの結果が低めとなり、逆にVの傾きは0.89で、ICP-AESの結果が高めとなった。しかし、他の金属の傾きは0.96～1.08と全般に1に近く、相関係数も0.88～0.99で有意(p<0.01)な相関を示した。

3 気象データと金属濃度の関係

表1に示した各雨期の気象データとICP-MSで測定した各金属の活発度を示す。金属濃度が1000ng/m^2を超える試料は20試料中14試料あり、そのときの主風向は、NW～W～WSWあるいはESE～E～NNEであった。また、その14試料中12試料が平均風速が3.0m/s以上であった。このことから、金属濃度が高い日は、風による土壌の巻き上げや遠方の発生源からの飛来の影響を受けていると考えられる。

一方、金属濃度が500ng/m^2以下の試料は30試料中7試料あり、そのときの主風向は、ESE～E～N～NNWであった。このことから、W系の風のときは金属濃度が高くなるが、E系の風のときは金属濃度がなくなると高くならず、決まった関係は見られなかった。

天候、気温との関係は見られなかった。

また、例年同様津市の両河口において、春先に黄砂が観測される。黄砂エアロゾル中の金属組成を見るたび、Alが特徴的に高いことがわかるが、今回の3年の調査期間中には黄砂が飛来しなかったため、Al濃度が極端に高くなるようなことはなかった。

4 季節別の粉じんと金属濃度

季節別の粉じん濃度とICP-MSで測定した各金属濃度の最大値、最小値、平均値を表2に示す。粉じん濃度は春が高く、秋、冬、夏は同じレベルであった。同様に春に濃度が最も高かった金属は、Al、V、Ni、Cdであった。しかし、Alと同様に土壌からの寄与が大きいと考えられるFeは、春よりも冬に高濃度になっており、同じくMnは春が低く、冬や夏に高濃度になる傾向を示した。このことから、Al、Fe、Mnなど主に土壌に由来する金属は、今回土壌や自動車といった人为的発生源の影響を受けたために、傾向に差が見られたものと考えられる。

Feと同様に春よりも冬に高濃度になった金属は、Ti、Co、Cuであったが、この3金属は春と冬はほとんど同

レベルであった。また、Mnと同様に春が低く、冬や夏に高濃度となった金属は、ZnとPbであった。

表4にICP-MSで測定した各金属濃度と粉じん濃度の相関係数を示すが、前述したように、FeとCoとCu、MnとZnとPbでそれぞれ有意(p<0.01)な相関が見られ、同一日生源に由来することが示唆された。FeとCoとCuの発生源としては土壌以外に、鉄鋼関連の工場や自動車部品など考えられる。またMnとZnとPbの発生源としては土壌以外に、物の燃焼や自動車部品、工場など考えられる。しかし、現段階では特定することはできなかった。

表2 季節別の粉じん濃度（単位μg/m^3）

<table>
<thead>
<tr>
<th>季節</th>
<th>最大値</th>
<th>最小値</th>
<th>平均値</th>
</tr>
</thead>
<tbody>
<tr>
<td>冬</td>
<td>76</td>
<td>28</td>
<td>39</td>
</tr>
<tr>
<td>春</td>
<td>120</td>
<td>33</td>
<td>98</td>
</tr>
<tr>
<td>夏</td>
<td>78</td>
<td>19</td>
<td>54</td>
</tr>
</tbody>
</table>

5 濃縮係数による発生源の推定

京都府は、気象浮遊粒子中の元素が土壌以外の人為的な発生源の影響をどれだけ受けているかを、次式で示す濃縮係数（EF値）で評価している。

\[ EF = \left( \frac{CA}{CA_m} \right) \left( \frac{CC}{CC_m} \right) \]

ここで、CAは大気中の、CCは地殻中の濃度で、iは各金属、AIは基準となるAIを示す。EFが1であれば土壌起源、1を超えると人為発生源の影響を受けていて、1より小さいと稀釈されていることを示す。

表3にICP-MSで測定した各金属濃度から求めた季節別のEF値を示す。

Tiは唯一希釈されており、V、Mn、Fe、Co、Niは土壌起源の影響が大きいものの、人為的発生源の影響を少なめていることが示唆された。それ以外の金属、特にZn、Cd、Pbは人為的な発生源の寄与が非常に大きいことがわかった。これらの結果から、土壌からの影響を考慮に入れると、発生源の影響が大きいものであることが示唆された。
<table>
<thead>
<tr>
<th>金属</th>
<th>季節</th>
<th>金属濃度 (ng/ml)</th>
<th>濃縮係数</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>大値</td>
<td>小値</td>
</tr>
<tr>
<td>Al</td>
<td>秋冬</td>
<td>530</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>春</td>
<td>1600</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>夏</td>
<td>470</td>
<td>39</td>
</tr>
<tr>
<td>Ti</td>
<td>秋冬</td>
<td>18</td>
<td>1.4</td>
</tr>
<tr>
<td></td>
<td>春</td>
<td>27</td>
<td>2.9</td>
</tr>
<tr>
<td></td>
<td>夏</td>
<td>37</td>
<td>1.0</td>
</tr>
<tr>
<td>V</td>
<td>秋冬</td>
<td>9.9</td>
<td>0.73</td>
</tr>
<tr>
<td></td>
<td>春</td>
<td>11</td>
<td>1.4</td>
</tr>
<tr>
<td></td>
<td>夏</td>
<td>12</td>
<td>2.4</td>
</tr>
<tr>
<td>Mn</td>
<td>秋冬</td>
<td>46</td>
<td>0.51</td>
</tr>
<tr>
<td></td>
<td>春</td>
<td>1600</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>夏</td>
<td>56</td>
<td>3.8</td>
</tr>
<tr>
<td>Fe</td>
<td>秋冬</td>
<td>1400</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>春</td>
<td>2000</td>
<td>340</td>
</tr>
<tr>
<td></td>
<td>夏</td>
<td>1800</td>
<td>220</td>
</tr>
<tr>
<td>Co</td>
<td>秋冬</td>
<td>0.68</td>
<td>0.13</td>
</tr>
<tr>
<td></td>
<td>春</td>
<td>0.81</td>
<td>0.23</td>
</tr>
<tr>
<td></td>
<td>夏</td>
<td>1.1</td>
<td>0.092</td>
</tr>
<tr>
<td>Ni</td>
<td>秋冬</td>
<td>12</td>
<td>0.96</td>
</tr>
<tr>
<td></td>
<td>春</td>
<td>9.2</td>
<td>2.6</td>
</tr>
<tr>
<td></td>
<td>夏</td>
<td>11</td>
<td>1.4</td>
</tr>
<tr>
<td>Cu</td>
<td>秋冬</td>
<td>19</td>
<td>4.3</td>
</tr>
<tr>
<td></td>
<td>春</td>
<td>28</td>
<td>5.3</td>
</tr>
<tr>
<td></td>
<td>夏</td>
<td>26</td>
<td>3.8</td>
</tr>
<tr>
<td>Zn</td>
<td>秋冬</td>
<td>320</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>春</td>
<td>2200</td>
<td>89</td>
</tr>
<tr>
<td></td>
<td>夏</td>
<td>450</td>
<td>71</td>
</tr>
<tr>
<td>Cd</td>
<td>秋冬</td>
<td>1.5</td>
<td>0.19</td>
</tr>
<tr>
<td></td>
<td>春</td>
<td>3.5</td>
<td>0.39</td>
</tr>
<tr>
<td></td>
<td>夏</td>
<td>2.1</td>
<td>0.21</td>
</tr>
<tr>
<td>W</td>
<td>秋冬</td>
<td>2.6</td>
<td>0.56</td>
</tr>
<tr>
<td></td>
<td>春</td>
<td>1.6</td>
<td>0.29</td>
</tr>
<tr>
<td></td>
<td>夏</td>
<td>1.5</td>
<td>0.33</td>
</tr>
<tr>
<td>Pb</td>
<td>秋冬</td>
<td>37</td>
<td>5.1</td>
</tr>
<tr>
<td></td>
<td>春</td>
<td>280</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>夏</td>
<td>81</td>
<td>5.3</td>
</tr>
</tbody>
</table>
### 表4 金属と粉じんの相関係数

<table>
<thead>
<tr>
<th></th>
<th>Al</th>
<th>Ti</th>
<th>V</th>
<th>Mn</th>
<th>Fe</th>
<th>Co</th>
<th>Ni</th>
<th>Cu</th>
<th>Zn</th>
<th>Cd</th>
<th>W</th>
<th>Pb</th>
<th>粉じん</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Ti</td>
<td>0.86**</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>0.50**</td>
<td>0.54**</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Mn</td>
<td>0.25</td>
<td>0.52**</td>
<td>0.32</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe</td>
<td>0.69**</td>
<td>0.81**</td>
<td>0.48**</td>
<td>0.76**</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Co</td>
<td>0.68**</td>
<td>0.85**</td>
<td>0.55**</td>
<td>0.72**</td>
<td>0.92**</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ni</td>
<td>0.52**</td>
<td>0.66**</td>
<td>0.79**</td>
<td>0.53**</td>
<td>0.72**</td>
<td>0.80**</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cu</td>
<td>0.52**</td>
<td>0.73**</td>
<td>0.59**</td>
<td>0.77**</td>
<td>0.86**</td>
<td>0.92**</td>
<td>0.82**</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zn</td>
<td>0.10</td>
<td>0.32</td>
<td>0.25</td>
<td>0.96**</td>
<td>0.62**</td>
<td>0.55**</td>
<td>0.39*</td>
<td>0.64**</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cd</td>
<td>0.27</td>
<td>0.47**</td>
<td>0.56**</td>
<td>0.84**</td>
<td>0.65**</td>
<td>0.67**</td>
<td>0.69**</td>
<td>0.80**</td>
<td>0.80**</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W</td>
<td>0.01</td>
<td>0.07</td>
<td>0.05</td>
<td>0.10</td>
<td>0.08</td>
<td>0.13</td>
<td>0.16</td>
<td>0.28</td>
<td>0.08</td>
<td>0.25</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pb</td>
<td>0.17</td>
<td>0.41*</td>
<td>0.38*</td>
<td>0.94**</td>
<td>0.65**</td>
<td>0.62**</td>
<td>0.48**</td>
<td>0.77**</td>
<td>0.95**</td>
<td>0.89**</td>
<td>0.19</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>粉じん</td>
<td>0.72**</td>
<td>0.63**</td>
<td>0.54**</td>
<td>0.29</td>
<td>0.65**</td>
<td>0.66**</td>
<td>0.55**</td>
<td>0.60**</td>
<td>0.17</td>
<td>0.43**</td>
<td>0.11</td>
<td>0.31</td>
<td>1.00</td>
</tr>
</tbody>
</table>

**原稿に記載のp値は全て0.01以下。**

6. 過去の国設宇部大気汚染測定所の分析結果と比較

宇部市に平成15年3月まで設置されていた国設宇部大気汚染測定所では、1968年度から1995年度まで毎月1回（1日採取）、浮遊粉じん中の金属分析（HV採取／塩酸分解／ICP－AES分析）が行われていた2)。そこで、対象とする12金属（Al, Ti, Wを除く）金属について、今回のICP－AESの結果（Co, CdはICP－MSの結果）と年平均値で比較してみると、2002～2003年はほとんどの金属で濃度が減少あるいは横ばいであった。しかしZnは、濃度が一定の範囲で推移するようになった1975年～1995年の平均値170ng／m³と比較して、2002～2003年は240ng／m³と少し増加しており、自動車タイヤの磨耗や石油ガソリンの燃焼など、人為的発生源からの大気放出流が増加したためではないかと考えられる。

また、1995年度の各月の値と今回の季節別の平均値を比較すると、Znの冬（50→500ng／m³）、春（90→200ng／m³）、夏（140→460ng／m³）のように、2002～2003年には濃度が増加した金属があった。特に冬には、V, Mn, Fe, Cu, Zn, Pbが春、春にはV, Mn, Fe, Zn, Pbが1995年度より増加していた。1995年度の各月1日の測定値も2週間の平均値をとって今回の測定値の方が、より実際の汚染状況を表していると考えられる。宇部市の大気中の金属による汚染は、1995年度までの結果よりも高いレベルにあると推察できる。

### まとめ

化学工業を中心とする工業地域である宇部市において、大気粉じん中の12種類の金属測定を行ったところ、以下ののような金属汚染の特徴が見られた。

1. W系の風のときは金属濃度が高くなるが、E系の風のときは金属濃度が高くなくなると低くなることが見られた。また、平均風速が3.0m／s以上のときに金属濃度が高くなる傾向が見られた。

2. 季節毎に見ると、冬～春に金属濃度が高くなるものが多かった。

3. 主に土壌由来とされるAI, Fe, Mnは、今回結果では濃度推移の傾向が異なり、人为的発生源の影響も受けていることが示唆された。

4. 各金属間の相関係数を見ると、FeとCoとCu, MnとZnとPbに有意（p<0.01）な相関が見られた。

5. 濃縮係数（EF値）から発生源を推察すると、V, Mn, Fe, Co, Niは土壌十人为的発生源の影響を受けており、それ以外の金属、主にZn, Cd, Pbは人为的な発生源の寄与が非常に大きいことがわかった。

6. 過去の宇部市の調査と比較すると、今回の結果ではZn濃度が高くなっていることがわかった。

### 謝辞

本研究を行うにあたり、試料採取にご協力いただいた、宇部健康福祉センター環境保全課環境指導班の皆さんに感謝いたします。
参考文献
1）環境省
2）西川雅高ほか：地球環境 7 (2), 181 - 186 (2002)
4）国立天文台編：理科年表
7）財団法人日本環境衛生センター：平成7年度環境庁
    委託業務結果報告書